Role of NFκB in age-related vascular endothelial dysfunction in humans

نویسندگان

  • Anthony J. Donato
  • Gary L. Pierce
  • Lisa A. Lesniewski
  • Douglas R. Seals
چکیده

(CVD) are the leading cause of morbidity and mortality in the United States and other industrialized societies. Older age is the major risk factor for development of CVD [1]. Emerging evidence over the past 20 years suggests that the arterial vascular endothelium plays a critical role in the development of CVD, most notably, atherosclerosis. A healthy vascular endothelium is characterized by a tightly regulated balance of pro-and anti-oxidants, vasodilators and vasoconstrictors, and pro-and anti-inflammatory molecules. A diseased or dysfunctional endothelium displays a " pro-atherogenic " phenotype, losing its tightly regulated balance and adopting a pro-oxidant/vasoconstrictor/pro-inflammatory phenotype. A hallmark of arterial endothelial dysfunction is impaired endothelial dependent dilation, which is predictive of future CVD events [1, 2]. Aging leads to impaired endothelial dependent dilation associated elevated oxidative stress and a pro-inflammatory endothelial cell phenotype. Recent studies in humans by our group and by others in rodents suggest a critical role of nuclear factor κB (NFκB) in the pro-inflammatory / pro-oxidant linked suppression of endothelial dependent dilation with advancing aging [3-7]. This perspective will discuss new information concerning the role of increased NFκB signaling in mediating vascular endothelial dysfunction with aging in humans. This is an open‐access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited NFκB is an important transcription factor expressed in all mammalian cell types. It is responsible for regulating gene expression of factors that control cell adhesion, proliferation, inflammation, redox status, and tissue specific enzymes. In arteries, NFκB is thought to promote CVD through its pro-inflammatory, pro-adhesion and pro-oxidant gene transcription. Recent evidence, however, suggests that not all NFκB-mediated gene regulation may be deleterious to the vascular system. For example, acute shear stress evoked increases in endothelial nitric oxide synthase, the enzyme that synthesizes the vascular protective molecule nitric oxide, is NFκB dependent [8]. The complexity in the control of NFκB signaling provides insight into how this transcription factor can have such diversity of regulatory responsibilities. The NFκB activation pathway is triggered by a wide variety of stimuli including inflammatory cytokines, reactive oxygen species, lipids and mechanical forces acting on the vascular endothelial wall leading to stimulation of transmembrane receptors. This triggers intracellular signaling pathways leading to an activation of a kinase (IκK) mediated phosphorylation and degradation of the inhibitor of NFκB (IκB). This results in translocation of …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The roles of potassium channels in contractile response to urotensin-II in mercury chloride induced endothelial dysfunction in rat aorta

Urotensin-II (U-II), the most potent vasoconstrictor that has recently been recognized as a new candidate in cardiovascular dysfunction, might exert vasoconstriction through, at least partially, potassium channels that are predominant in both endothelial and vascular smooth muscle cells (VSMCs). The present study was designed to evaluate the roles of potassium channels in vascular responses to ...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

P 61: MicroRNA as a Therapeutic Tool to Prevent Blood Brain Barrier Dysfunction in Neuroinflammation

Endothelial cells present in brain are unique and differ from other peripheral tissues in a number of ways, which ensures specific brain endothelial barrier properties. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation. Various microRNAs (miRNA) have been discovered in different cellular components of the blood bran barrier (BBB). miRNAs a...

متن کامل

A Review of the Relationship between Obesity and Some Sexual Dysfunction in Men and Women

Introduction: Obesity, one of the major growing problems of the present century is reaching pandemic proportions. Today, a large percentage of men and women of all ages suffer from obesity. The relationship between obesity and its effect on sexual dysfunction through different mechanisms has been documented. Obesity, a risk factor for cardiovascular and metabolic diseases with impaired immune s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009